Optimal Robustness of Port-Hamiltonian Systems
نویسندگان
چکیده
منابع مشابه
Discrete port-Hamiltonian systems
Either from a control theoretic viewpoint or from an analysis viewpoint it is necessary to convert smooth systems to discrete systems, which can then be implemented on computers for numerical simulations. Discrete models can be obtained either by discretizing a smooth model, or by directly modeling at the discrete level itself. One of the goals of this paper is to model port-Hamiltonian systems...
متن کاملPort-Hamiltonian Systems on Graphs
In this paper we present a unifying geometric and compositional framework for modeling complex physical network dynamics as portHamiltonian systems on open graphs. Basic idea is to associate with the incidence matrix of the graph a Dirac structure relating the flow and effort variables associated to the edges, internal vertices, as well as boundary vertices of the graph, and to formulate energy...
متن کاملPort-Hamiltonian Systems Theory: An Introductory Overview Port-Hamiltonian Systems Theory: An Introductory Overview
An up-to-date survey of the theory of port-Hamiltonian systems is given, emphasizing novel developments and relationships with other formalisms. Port-Hamiltonian systems theory yields a systematic framework for network modeling of multi-physics systems. Examples from different areas show the range of applicability. While the emphasis is on modeling and analysis, the last part provides a brief i...
متن کاملBounded stabilisation of stochastic port-Hamiltonian systems
This paper proposes a stochastic bounded stabilization method for a class of stochastic port-Hamiltonian systems. Both full-actuated and underactuated mechanical systems in the presence of noise are considered in this class. The proposed method gives conditions for the controller gain and design parameters under which the state remains bounded in probability. The bounded region and achieving pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2020
ISSN: 0895-4798,1095-7162
DOI: 10.1137/19m1259092